skip to main content


Search for: All records

Creators/Authors contains: "Kundaje, Anshul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Short tandem repeats (STRs) are enriched in eukaryoticcis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)–DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites. 
    more » « less
    Free, publicly-accessible full text available September 22, 2024
  3. Abstract Background Nucleomorphs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. Results In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans . We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain. Conclusions We provide the first study of a nucleomorph genome using modern functional genomic tools, and derive numerous novel insights into the physical and functional organization of these unique genomes. 
    more » « less
  4. Abstract Background

    3′-end processing by cleavage and polyadenylation is an important and finely tuned regulatory process during mRNA maturation. Numerous genetic variants are known to cause or contribute to human disorders by disrupting the cis-regulatory code of polyadenylation signals. Yet, due to the complexity of this code, variant interpretation remains challenging.

    Results

    We introduce a residual neural network model,APARENT2, that can infer 3′-cleavage and polyadenylation from DNA sequence more accurately than any previous model. This model generalizes to the case of alternative polyadenylation (APA) for a variable number of polyadenylation signals. We demonstrate APARENT2’s performance on several variant datasets, including functional reporter data and human 3′ aQTLs from GTEx. We apply neural network interpretation methods to gain insights into disrupted or protective higher-order features of polyadenylation. We fine-tune APARENT2 on human tissue-resolved transcriptomic data to elucidate tissue-specific variant effects. By combining APARENT2 with models of mRNA stability, we extend aQTL effect size predictions to the entire 3′ untranslated region. Finally, we perform in silico saturation mutagenesis of all human polyadenylation signals and compare the predicted effects of$${>}43$$>43million variants against gnomAD. While loss-of-function variants were generally selected against, we also find specific clinical conditions linked to gain-of-function mutations. For example, we detect an association between gain-of-function mutations in the 3′-end and autism spectrum disorder. To experimentally validate APARENT2’s predictions, we assayed clinically relevant variants in multiple cell lines, including microglia-derived cells.

    Conclusions

    A sequence-to-function model based on deep residual learning enables accurate functional interpretation of genetic variants in polyadenylation signals and, when coupled with large human variation databases, elucidates the link between functional 3′-end mutations and human health.

     
    more » « less
  5. The intrinsic DNA sequence preferences and cell type–specific cooperative partners of transcription factors (TFs) are typically highly conserved. Hence, despite the rapid evolutionary turnover of individual TF binding sites, predictive sequence models of cell type–specific genomic occupancy of a TF in one species should generalize to closely matched cell types in a related species. To assess the viability of cross-species TF binding prediction, we train neural networks to discriminate ChIP-seq peak locations from genomic background and evaluate their performance within and across species. Cross-species predictive performance is consistently worse than within-species performance, which we show is caused in part by species-specific repeats. To account for this domain shift, we use an augmented network architecture to automatically discourage learning of training species–specific sequence features. This domain adaptation approach corrects for prediction errors on species-specific repeats and improves overall cross-species model performance. Our results show that cross-species TF binding prediction is feasible when models account for domain shifts driven by species-specific repeats. 
    more » « less
  6. Abstract

    A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research.

     
    more » « less
  7. Abstract

    Dinoflagellate chromosomes represent a unique evolutionary experiment, as they exist in a permanently condensed, liquid crystalline state; are not packaged by histones; and contain genes organized into tandem gene arrays, with minimal transcriptional regulation. We analyze the three-dimensional genome ofBreviolum minutum, and find large topological domains (dinoflagellate topologically associating domains, which we term ‘dinoTADs’) without chromatin loops, which are demarcated by convergent gene array boundaries. Transcriptional inhibition disrupts dinoTADs, implicating transcription-induced supercoiling as the primary topological force in dinoflagellates.

     
    more » « less
  8. Somatic cell transcription factors are critical to maintaining cellular identity and constitute a barrier to human somatic cell reprogramming; yet a comprehensive understanding of the mechanism of action is lacking. To gain insight, we examined epigenome remodeling at the onset of human nuclear reprogramming by profiling human fibroblasts after fusion with murine embryonic stem cells (ESCs). By assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation sequencing we identified enrichment for the activator protein 1 (AP-1) transcription factor c-Jun at regions of early transient accessibility at fibroblast-specific enhancers. Expression of a dominant negative AP-1 mutant (dnAP-1) reduced accessibility and expression of fibroblast genes, overcoming the barrier to reprogramming. Remarkably, efficient reprogramming of human fibroblasts to induced pluripotent stem cells was achieved by transduction with vectors expressing SOX2, KLF4, and inducible dnAP-1, demonstrating that dnAP-1 can substitute for exogenous human OCT4. Mechanistically, we show that the AP-1 component c-Jun has two unexpected temporally distinct functions in human reprogramming: 1) to potentiate fibroblast enhancer accessibility and fibroblast-specific gene expression, and 2) to bind to and repressOCT4as a complex with MBD3. Our findings highlight AP-1 as a previously unrecognized potent dual gatekeeper of the somatic cell state.

     
    more » « less
  9. Abstract Motivation Genome-wide profiles of chromatin accessibility and gene expression in diverse cellular contexts are critical to decipher the dynamics of transcriptional regulation. Recently, convolutional neural networks have been used to learn predictive cis-regulatory DNA sequence models of context-specific chromatin accessibility landscapes. However, these context-specific regulatory sequence models cannot generalize predictions across cell types. Results We introduce multi-modal, residual neural network architectures that integrate cis-regulatory sequence and context-specific expression of trans-regulators to predict genome-wide chromatin accessibility profiles across cellular contexts. We show that the average accessibility of a genomic region across training contexts can be a surprisingly powerful predictor. We leverage this feature and employ novel strategies for training models to enhance genome-wide prediction of shared and context-specific chromatin accessible sites across cell types. We interpret the models to reveal insights into cis- and trans-regulation of chromatin dynamics across 123 diverse cellular contexts. Availability and implementation The code is available at https://github.com/kundajelab/ChromDragoNN. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  10. null (Ed.)
    Distribution shifts—where the training distribution differs from the test distribution—can substantially degrade the accuracy of machine learning (ML) systems deployed in the wild. Despite their ubiquity in the real-world deployments, these distribution shifts are under-represented in the datasets widely used in the ML community today. To address this gap, we present WILDS, a curated benchmark of 10 datasets reflecting a diverse range of distribution shifts that naturally arise in real-world applications, such as shifts across hospitals for tumor identification; across camera traps for wildlife monitoring; and across time and location in satellite imaging and poverty mapping. On each dataset, we show that standard training yields substantially lower out-of-distribution than in-distribution performance. This gap remains even with models trained by existing methods for tackling distribution shifts, underscoring the need for new methods for training models that are more robust to the types of distribution shifts that arise in practice. To facilitate method development, we provide an open source package that automates dataset loading, contains default model architectures and hyperparameters, and standardizes evaluations. The full paper, code, and leaderboards are available at https://wilds.stanford.edu. 
    more » « less